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1. COMBINATION TECHNIQUES
a. Goal is high-quality, uniform, global, long-term, fine-scale time-space grid of 

precipitation estimates.
b. Current approaches to combining satellite data are:
• NASA/NRL (Huffman/Turk): Eulerian time slices (all data falling in time/space grid

box, intercalibrated):
• GPCP (SG, pentad, 1DD); TRMM TMPA (3b42, 3b43, 3b42RT); NRL
• robust to data variations

• NOAA (Joyce, Janowiak): Lagrangian time interpolation (morphing; also 
intercalibrated):
• CMORPH, GSMAP
• provides fine-time interval

c. Combinations that incorporate gauge data surpass no-gauge products
d. Current approaches to combining gauge data are:
• Huffman (NASA): Large-area bias removal, inverse error weighting in monthly fields; 

scale shorter-interval estimates to sum to monthly estimates (GPCP; TMPA)
• Xie (NOAA): Cressman analysis in daily fields; scale shorter-interval estimates to sum 

to daily estimates (for densely gauged regions)



EXAMPLE OF RESULTS FROM TRMM TMPA Scheme
(TRMM Multi-satellite Precipitation Analysis)

Merged microwave is approaching 80% coverage for 3-hour time slice

TMI - white  SSMI - light gray     AMSR - medium gray AMSU - dark gray

Microwave  (mm/h)   00Z 25 May 2004



Conceptual input data quality
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2. HIGH-LATITUDE/COLD SEASON INPUT DATA ISSUES
Combination results are dominated by

limitations in input data

a. Note “cold/snowy” issues dominate in 
wintertime:

• U.S., episodically to Gulf Coast;
• temperate mountains -- Rockies, Andes,

Himalayas, Tibetan Plateau, Alps;
• Europe and Siberia.

b. Remaining uncertainties about 
possible  information content of 
various sensors:

• sensing precipitation over ice, snow, & 
frozen
surfaces;

• sensing light precipitation and/or precip in
cold, dry environments.

c. Estimates with longer records have 
lower quality -- leading to basic 
question is: What is “good enough”
for operational global data?

d. Error estimation in high latitudes is as 
challenging, or more so, as in tropics.



3. EXAMPLE OF HIGH-LATITUDE PRECIP COMBINATION
a. Comparisons of GPCP-1DD to BALTEX gauge analysis averaged over Baltic

Sea drainage basin (Jan-Feb 1997)
• monthly bias set by gauge calibration
• day-to-day variation driven by rescaled TOVS sounding-based estimates

January February



4.  HIGH-LATITUDE DATA QUALITY
a. Chris Kidd -- British Isles, zonal profiles of precipitation occurrence over ocean

• “standard” SSMI schemes
• compared to gauges (British Isles) and COADS ship records
• in 2 studies, detectability thresholds cause satellites to miss up to 80% of occurrences,

amounting up to 50% of accumulation (British Isles)

b. Christian Klepp -- Arctic (2001, 2005)
• standard SSMI schemes, GPCP 1DD
• compared to ships of opportunity, ECMWF, Bauer and Schlüssel (1993) SSMI algorithm

for cases of intense post-frontal squalls in far North Atlantic
• these squalls are relatively frequent and mostly missed -- short-interval (1DD, pentad)

give wrong patterns while monthly accumulations give wrong totals

c. Mark Serreze -- Arctic (2003, 2005)
• mostly GPCP monthly multi-satellite before gauge-adjustment step
• compared to gauges, including ice islands, and NCEP reanalysis
• better agreement in SSMI era and in summer
• generally low in Ob, Venisey, and Lena River basins
• variability tends to be low
• gauge adjustment is important

d. Christophe Genthon – Antarctic (2003)
• GPCP monthly SG
• compared EOFs to EOFs for NCEP/NCAR, NCEP2, LMDZ reanalyses
• results are much better in SSMI era
• variability tends to be “different” in mostly-SSM/I bands 40-50°N/S



PIXEL-LEVEL ISSUES

Maps of pixel-level fractional occurrence of 
precipitation for AMSR, SSMI, and AMSU 
illustrate different:

• masks to avoid artifacts,
• degrees of success in pixel-by-pixel 

rejection of artifacts,
• sensitivities to light precipitation 

Fractional coverage issue is most 
noticeable in oceanic subtropical highs:

• Can not intercalibrate rain that does not exist !  
• But -- if there are “too many” rain events, 

smallest ones can always be set to zero.

AMSR (% precip)  Feb 2004

SSM/I F13 (% precip)  Feb 2004

AMSU NOAA-L  (% precip)  Feb 2004



HIGH-LATITUDE FIRST ROUND 
WITH TOVS

5 ocean, 1 land histogram match 
against “HQ” merged microwave 
for May 2004  qualitatively corrects 
coverage and rate factors:

• coincident sampling is reasonable

• larger coverage by high values likely 
results from very stubby tail in TOVS 
precipitation histogram

• fall-off in HQ at high latitudes is forced 
into calibrated TOVS; this needs to be 
examined

May 2004  (mm/d)

Coin. TOVS

Coin. Cal. TOVS

Coin. HQ



5. HIGH-LATITUDE / COLD SEASON NEEDS
a.  Additional sources of high-quality input data

b.  Improved retrieval schemes using legacy, current, & new input data sources
• liquid equivalent
• precipitation type
• error estimates

c. High-quality data sources for broad-scale high-lat calibration & validation
• fine-scale for detailed algorithm development
• long-term for examining climatological statistics
• CloudSat data very useful; GPM DPR is coming; possibly SNOWSAT mission
• gauge data continue to be problematic

d. Continued development of both current and long-term data records

e. Agreement on scalable, near-equal-area global grid
• re-gridding can damage fine-scale precipitation statistics

f. Improved combination approaches that
• shift out inputs as they degrade or terminate -- but
• without damaging higher-order statistics

http://precip.gsfc.nasa.gov
george.j.huffman@nasa.gov
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HIGH-LATITUDE DATA Sources

Accurate input data are less plentiful at high latitudes

“ground truth”; long record
severe,
location-dependent undercatch; sparse spatial sampling

Gauge

Advantages, DisadvantagesData Set

reasonable retrievals over surface ice/snow
short record; short development history

High-frequency 
microwave

long record; apparent sensitivity at all latitudes
short development history; problems in early TOVS data 
record; high fractional coverage/low rain rate; footprint size

NASA/SRT TOVS 
and AIRS; 
NESDIS ATOVS

long record; apparent sensitivity at all latitudes
short development history; problems in early data record; 
need for independent climatology; problems in application 
for extremes

NOAA/CPC OLR 
Precip Index (OPI)

operational
footprint size; interference by surface ice/snow

Current NESDIS 
AMSU-B

long record
detectability problems; interference by surface ice/snow
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INTRODUCTION Version 2
Monthly Satellite-Gauge (SG)
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• Various input data depending 
on era

• Sequential calibration and 
combination of input data

• High-latitude and cold-season 
precip estimates provided by
gauge, TOVS, OPI



SSMI–TOVS Merger, V.2 GPCP SG  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
#Smooth-fill ratios between (ZA((SSMI + TOVS) / 2) / ZA (TOVS)) for equatorial boundary and the gauge ratio for polarward 
boundary 
+Zonal Average Ratio Adjustment for Transition Zones (ZA((SSMI + TOVS) / 2) / ZA (TOVS)) 
*Zonal Average Ratio Adjustment for Equatorial Region (ZA(SSMI) / ZA (TOVS)) 
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Ratio-Adjusted TOVS# [ratio set to 1 at Iceland latitude bands] 
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SSMI,        if SSMI exists 
Zonal Average Ratio-Adjusted TOVS*, if no SSMI 

Average of SSMI & TOVS,    if SSMI exists 
Zonal Average Ratio-Adjusted TOVS+,if no SSMI

Average of SSMI & TOVS,   if SSMI exists 
Zonal Average Ratio-Adjusted TOVS+, if no SSMI  

 Transition Zones

Gauge-Adjusted TOVS 

Gauge-Adjusted TOVS 



INTRODUCTION One-
Degree Daily (1DD)

• Similar input data, 
treated differently

• High-latitude and cold-
season precip estimates 
provided by TOVS, 
scaled by SG



INTRODUCTION Getting to the Future

Current
• Monthly estimates from selected data sets
• Pentad and daily scaled to (approx.) add up to the monthly

Planned
• Use “all” available data to get fine time/space resolution estimates
• Rescale fine-scale to account for monthly input data (gauges)
• System needs to gracefully degrade/improve as satellite complement evolves

Design choices
• Satellite data are calibrated to a single standard
• Data are combined sequentially; less-certain data are used to fill voids in more-

certain data
• Combinations done after calibration

We need much-improved precip algorithms at high latitudes and for cold seasons



HIGH-LATITUDE First Round With TOVS

The NASA/SRT TOVS product has high fractional coverage and low rates.

We start out applying probability matching to coincident data for May 2004:

• using TMI, the correction was partitioned into 1 ocean and 1 land histogram
- not satisfactory, as expected

• using TMI, the correction was partitioned into 5 ocean and 1 land histogram
- ocean zones are: 40-30°S, 30-10°S, 10°S-N, 10-30°N, 30-40°N
- fairly successful within the TMI domain, but gave unreasonably high values in the 
Southern Ocean

• using the HQ (inter-calibrated to TMI), the correction is being partitioned into 5
ocean and 1 land histogram
- ocean zones are: 45-20°S, 20°S-4°N, 4-9°N, 9-40°N, 40-55°N
- we might move to 7 ocean bands for better match-ups
- we must also examine the details over land



HIGH-LATITUDE First Round with 
TOVS (cont.)

Choosing a particular 3-hourly time, 
the calibrated TOVS is markedly 
closer to the corresponding 3B42RT 
than the original.

• The bands of “missing” are a 
feature of the processing.

15 Z 26 May 2004 (mm/h)

3B42RT

TOVS

Cal. TOVS



HIGH-LATITUDE First Round with 
TOVS (cont.)

The 5 ocean, 1 land histogram match 
against the “HQ” merged microwave 
for May 2004  qualitatively corrects the 
coverage and rate issues.

• these are “full”, non-coincident 
maps

• the larger coverage by high values 
perhaps results from a very stubby 
tail to the TOVS precip histogram

• the fall-off in the HQ at high 
latitudes is forced into the cal. 
TOVS; this needs to be examined

May 2004  (mm/d)

TOVS

Cal. TOVS

HQ


