Major Problems in Microwave Radiative Transfer Pertaining to Retrieval of Freezing Rainfall and Snowfall Rates

Ralf Bennartz
Atmospheric and Oceanic Sciences
University of Wisconsin
Overview

- Where are we?
- Can we detect the phase of precipitation at the surface?
- Precipitation Rate?
- Sampling?
- Conclusions
Where are we?

NOAA15 overpass 13 September 2000, 06:43 UTC

RGB AVHRR ch3,4,5

AMSU high freq. Precip. product red: very light green: light/moderate blue: intense

Radar composite
Can the type of precipitation at the surface be directly detected from passive microwave observations?

Freezing level high:
- Strong emission signal
- Scattering signal
Can the type of precipitation at the surface be directly detected from passive microwave observations?

Freezing level lower:
weak emission signal
Scattering signal
Can the type of precipitation at the surface be directly detected from passive microwave observations?

Freezing level lower:
- weak or no emission signal
- Scattering signal

Mixture
Can the type of precipitation at the surface be directly detected from passive microwave observations?

Freezing level lower:

- weak or no emission signal
- Scattering signal
Can the type of precipitation at the surface be directly detected from passive microwave observations?

- **No.** Because passive microwave sensors are only sensitive to column-integrated quantities and not to quantities at any particular level.

- **Indirectly:** If the freezing level height can be inferred and assumptions about ice particle type, we might be able to estimate the type of precipitation at the surface.

- Note also, that in reality there are many instances where a mixture of rain and snow reaches the ground.
Precipitation rate: Modeling challenges

- Emission signal weak, possibly dominated by cloud liquid water. Coated, melting particles.
- Scattering signal: Non-spherical particles. Scattering properties not well understood.
- Surface emissivity not well described at high latitudes
- Despite recent progress physically self-consistent description (all frequencies, active+ passive) remains challenging.
Sampling: Convective maximum of rain Baltic Sea
Sampling: Convective maximum of rain Baltic Sea
Conclusions

- For quantitative precipitation estimation and/or phase detection at high latitudes active + passive is highly desirable

- Establishment of modeling chain: Two-dimensional spectral cloud models with multiple ice particle and frozen precipitation categories -> non-spherical (inhomogeneous) particle optical property (permittivity, size, shape) modeling - > development of parameterizations for general use in cost-driven applications.

- Development of high-latitude surface emissivity products (10-200 GHz) including error estimates.

- Intensification of data assimilation studies. Bias monitoring. Near-operational testing of modeling chains. High frequencies?