Progress in Retrieval of Light Rainfall and Falling Snow Rates from GPM Core Satellite’s GMI and DPR Sensors

Gail Skofronick Jackson
NASA Goddard Space Flight Center, Greenbelt, Maryland

Polar Snowfall Hydrology Meeting
June 26-28, 2007, Montreal, CA
GPM Instrument Capabilities

DPR – Active Sensor
Increased sensitivity for light rain and snow detection
- Ka+Ku improves the detection threshold from 0.5 to 0.17 mm/h
Better overall measurement accuracy
- New PIA methods with 2 channels
More microphysical information
- PSDs and identification of liquid, frozen, and mixed phase precipitation

GMI – Passive Sensor
Increased sensitivity for snow and light rain
- New channels at 166, 183±3, and 183±8 GHz are important for scattering signals
Includes TMI channel set
- 10 to 89 GHz for continuity with TRMM data set and constellation members

Resolution
- Footprints smaller than TRMM TMI

Independent Calibration Checks
- ensures high quality observations
US Falling Snow Retrieval Algorithm Methodologies

Physically-Based

March 2001

- NASA Goddard/U. Wash.

- 5.5 mm/hr (Melted)

Physically-Based

Retrieved (@1.5 km)

- Radar (1/14/01)

- Wakasa Bay, Japan data

Neural Networks

March 2001

- MIT
- Chen and Staelin
- Trans Geosci Remote Sens 2003

Polar Retrievals

- MIT, Staelin

Empirical Approach

25 January 2004

- NOAA, Kongoli, et al
- Geophys Res. Letters 2003
- & Ferraro et al TGARS 2005

Snow Detection
Ocean/lakes have same T_B as snow cloud.

Surface obscured, sees only snow cloud.

Cold, cloud top.
<table>
<thead>
<tr>
<th>GHz</th>
<th>Clear Air</th>
<th>Rain</th>
<th>Anvil</th>
<th>Light Snow</th>
<th>Moderate Snow</th>
<th>Heavy Snow</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>98,0,0,4</td>
<td>49,21,2</td>
<td>94,0,3</td>
<td>98,0,0,4</td>
<td>98,0,0,4</td>
<td>98,0,2,0,4</td>
</tr>
<tr>
<td>19</td>
<td>92,0,6</td>
<td>17,31,8</td>
<td>72,0,1,26</td>
<td>92,0,6</td>
<td>92,0,6</td>
<td>92,0,7,6</td>
</tr>
<tr>
<td>21</td>
<td>83,0,14</td>
<td>11,32,16</td>
<td>51,0,1,47</td>
<td>83,0,1,14</td>
<td>83,0,1,14</td>
<td>83,0,8,14</td>
</tr>
<tr>
<td>37</td>
<td>89,0,5</td>
<td>0,6,61,2</td>
<td>73,0,3,19</td>
<td>88,0,3,5</td>
<td>88,0,3,5</td>
<td>87,4,4</td>
</tr>
<tr>
<td>89</td>
<td>74,0,19</td>
<td>0,94,0,4</td>
<td>47,1,47</td>
<td>70,6,17</td>
<td>68,15,13</td>
<td>57,34,6</td>
</tr>
<tr>
<td>150</td>
<td>51,0,47</td>
<td>0,81,7</td>
<td>17,4,77</td>
<td>46,20,31</td>
<td>39,40,20</td>
<td>17,74,8</td>
</tr>
<tr>
<td>183±1</td>
<td>0,0,99</td>
<td>0,63,36</td>
<td>0,18,82</td>
<td>0,2,98</td>
<td>0,5,94</td>
<td>0,21,79</td>
</tr>
<tr>
<td>183±3</td>
<td>0,0,99</td>
<td>0,67,31</td>
<td>0,26,73</td>
<td>0,5,94</td>
<td>0,15,85</td>
<td>0,45,55</td>
</tr>
<tr>
<td>183±7</td>
<td>5,0,94</td>
<td>0,66,27</td>
<td>0,17,82</td>
<td>4,14,81</td>
<td>2,35,62</td>
<td>0,3,72,27</td>
</tr>
<tr>
<td>325</td>
<td>2,0,90</td>
<td>0,31,53</td>
<td>0,45,53</td>
<td>0,3,26,72</td>
<td>0,154,45</td>
<td>0,85,13</td>
</tr>
<tr>
<td>448±1.5</td>
<td>0,0,95</td>
<td>0,24,75</td>
<td>0,21,78</td>
<td>0,2,96</td>
<td>0,7,92</td>
<td>0,23,75</td>
</tr>
<tr>
<td>448±7.2</td>
<td>0,0,98</td>
<td>0,26,66</td>
<td>0,67,30</td>
<td>0,11,86</td>
<td>0,28,69</td>
<td>0,64,34</td>
</tr>
<tr>
<td>642</td>
<td>0,0,96</td>
<td>0,26,61</td>
<td>0,74,23</td>
<td>0,15,81</td>
<td>0,36,60</td>
<td>0,71,25</td>
</tr>
<tr>
<td>874 GHz</td>
<td>0,0,96</td>
<td>0,30,46</td>
<td>0,76,18</td>
<td>0,18,74</td>
<td>0,41,52</td>
<td>0,75,19</td>
</tr>
</tbody>
</table>
Retrieval Challenges: Particle Models

- For simplicity, spheres and dielectric mixing theories have been used.
- Methodologies such as the Discrete Dipole Approximation (DDA) allow the computation of radiative properties for various idealized shapes of snow crystals.
- This is a major challenge for physically linking active and passive and we may need to concentrate on bulk radiative properties.
- Must trust (or provide error models for) all assumptions
GPM Era Falling Snow Algorithms

1. Precipitating snow detection will be achievable
 - Minimum detection threshold to be determined
2. Precipitating snow rates are retrievable
 - Accuracies to be determined with further analysis
3. Ground validation systems *must* measure falling snow microphysics (PSD, shape, radiative properties) to reduce the number of assumptions in physically-based retrievals
4. Great opportunity exists for falling snow measurements using GPM’s radar and radiometer, and then transferred to constellation satellites