Follow this link to skip to the main content
Colorado State University Logo NASA Logo - Jet Propulsion Laboratory vertical line   + NASA Home Page
  + NASA CloudSat Portal
Jet Propulsion Laboratory NASA California Institute of Technology
JPL HOME EARTH SOLAR SYSTEM STARS AND GALAXIES TECHNOLOGY
this image shows light clouds on the dark blue background banner: CloudSat, image of the satellite
this image shows clouds in the background
Home
Overview
Mission
Instrument
News
Data
Cloud Art
Publications
Home
Journal Articles
Education
Science Team
Partners
Contacts
Ventures
this image shows clouds in the background
this image shows clouds in the background
Publications: 2014

  • Berry, E., and G. G. Mace, 2014: Cloud properties and radiative effects of the Asian summer monsoon derived from A-Train data, J. Geophys. Res. Atmos., 119, doi:10.1002/2014JD021458.
  • Doan, K., A. Oloso, K-S Kuo, and T. Clune, 2014: Performance comparison of big-data technologies in locating intersections in satellite ground tracks, submitted
  • Hamann, U., A. Walther, B. Baum, R. Bennartz, L. Bugliaro, M. Derrien, P. N. Francis, A. Heidinger, S. Joro, A. Kniffka, H. Le Gléau, M. Lockhoff, H.-J. Lutz, J. F. Meirink, P. Minnis, R. Palikonda, R. Roebeling, A. Thoss, S. Platnick, P. Watts, and G. Wind, Remote sensing of cloud top pressure/height from SEVIRI: analysis of ten current retrieval algorithms, Atmos. Meas. Tech., 7, 2839-2867, 2014, www.atmos-meas-tech.net/7/2839/2014/, doi:10.5194/amt-7-2839-2014.
  • Hassum, M.E.E., T.P. Lane, P.T. May, et al, Ground-based observations of overshooting convection during the Tropical Warm Pool-International Cloud Experiment, Journal of Geophysical Research: Atmospheres, v119 n2 (27 January 2014): 880-905.
  • Heymsfield, A. J., D. Winker, M. Avery, M. Vaughan, G. Diskin, M. Deng, V. Mitev, and R. Matthey, 2014: Relationships between Ice Water Content and Volume Extinction Coefficient from In Situ Observations for Temperatures from 0° to -86°C: Implications for Spaceborne Lidar Retrievals. J. Appl. Meteor. Clim., 53, 479–505.
  • Holl, G., S. Elliasson, S.A. Buehler, et al, SPARE-ICE: Synergistic ice water path from passive operational sensors, J. Geophys. Res. Atmos., 119, 1504-1523, doi:10.1002/2013JD020759.
  • Huang, Y., A. Protat, S. T. Siems, and M. J. Manton, 2014: A-Train Observations of Maritime Mid-latitude Storm Track Cloud Systems: Comparing the Southern Ocean against the North Atlantic. J. Geophys. Res., Accepted with major revisions, March 2014.
  • Huang, Y., S. T. Siems, M. J. Manton, and G. Thompson, 2014: An Evaluation of WRF Simulations of Clouds over the Southern Ocean with A-Train Observations. Mon. Wea. Rev., 142, 647–667. doi: http://dx.doi.org/10.1175/MWR-D-13-00128.1
  • Huo J, Lu D. Physical properties of high-level cloud over land and ocean from CloudSat-CALIPSO data. J Clim 2014 Dec 01;27(23):8966-78.
  • Igel, A.L., and S.C. van den Heever, 2013: The role of latent heating in warm frontogenesis, Quarterly Journal of the Royal Meteorological Society, v140 n678 (20140115): 139-150
  • Igel, Matthew R., Tropical Deep Convective Cloud Morphology, PhD Dissertation, Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA.
  • Igel, M. R., S. C. van den Heever, G. L. Stephens, and D. J. Posselt (2014): Convective-Scale Responses of a Large-Domain Modeled, Tropical Atmosphere to Surface Warming. Quarterly Journal of the Royal Meteorological Society, 140, DOI:10.1002/qj.2230.
  • Ishimoto, H., K. Okamoto, H. Okamoto, and K. Sato (2014), One-dimensional variational (1D-Var) retrieval of middle to upper tropospheric humidity using AIRS radiance data, J. Geophys. Res. Atmos., 119, 7633–7654, doi:10.1002/2014JD021706.
  • Jameson, A. R., and A. J. Heymsfield, 2014: Bayesian upscaling of aircraft ice measurements to two-dimensional domains for large-scale applications. Met. and Atmos. Phys., 123.1-2, 93-103. DOI 10.1007/s00703-013-0303-3
  • Jiang, J.H., H. Su, C. Zhai, T.J. Shen, T. Wu, J. Zhang, J. Cole, K. von Salzen, L.J. Donner, C. Seman, A. Del Genio, L.S. Nazarenko, J.L. Dufresne, M. Watanabe, C. Morcrette, T. Koshiro, H. Kawai, A. Gettelman, L. Millán, W.G. Read, N.J. Livesey, Y. Kasai, and M. Shiotani, "Evaluating the diurnal cycle of upper tropospheric ice clouds in climate models using SMILES observations," J. Atmos. Sci., in review.
  • Johnston, M.S., S. Eliasson, P. Eriksson, R. M. Forbes, A. Gettelman, P. Räisänen, and M. D. Zelinka: Diagnosing the average spatio-temporal impact of convective systems – Part 2: A model intercomparison using satellite data, Atmos. Chem. Phys., 14, 8701-8721, 2014, doi:10.5194/acp-14-8701-2014
  • Kahn, B. H., F. W. Irion, V. T. Dang, E. M. Manning, S. L. Nasiri, C. M. Naud, J. M. Blaisdell, M. M. Schreier, Q. Yue, K. W. Bowman, E. J. Fetzer, G. C. Hulley, K. N. Liou, D. Lubin, S. C. Ou, J. Susskind, Y. Takano, B. Tian, and J. R. Worden, The Atmospheric Infrared Sounder Version 6 cloud products, Atmos. Chem. Phys. Discuss., 13, 14477-14543, doi:10.5194/acpd-13-14477-2013
  • Kato, S., Fred G. Rose, Xu Liu, Bruce A. Wielicki, and Martin G. Mlynczak, 2014: Retrieval of Atmospheric and Cloud Property Anomalies and Their Trend from Temporally and Spatially Averaged Infrared Spectra Observed from Space. J. Climate, 27, 4403–4420. doi: http://dx.doi.org/10.1175/JCLI-D-13-00566.1
  • Kawamoto, K. and K. Suzuki, Distributional correspondence of 94-GHz radar reflectivity with the variation in water cloud properties over the northwestern Pacific and China, Journal of Quantitative Spectroscopy and Radiative Transfer, doi: 10.1016/j.jqsrt.2014.10.012.
  • Klingaman, N. P. and Woolnough, S. J. (2014), Using a case-study approach to improve the Madden–Julian oscillation in the Hadley Centre model. Q.J.R. Meteorol. Soc., 140: 2491–2505.
  • Komurcu, M., T. Storelvmo, I. Tan, U. Lohmann, Y. Yun, J. Penner, Y. Wang, X. Liu, T. Takemura, et al, Intercomparison of the cloud water phase among global climate models, Journal of Geophysical Research: Atmospheres, v119 n6 (27 March 2014): 3372-3400.
  • Kuba, N., T. Hashino, M. Satoh, K. Suzuki, et al, Relationships between layer-mean radar reflectivity and columnar effective radius of warm cloud: Numerical study using a cloud microphysical bin model, Journal of Geophysical Research: Atmospheres, v119 n6 (27 March 2014): 3281-3294.
  • Kumar, A., M. Nair and K. Rajeev, 2014: Multiyear CloudSat and CALIPSO Observations of the Dependence of Cloud Vertical Distribution on Sea Surface Temperature and Tropospheric Dynamics. J. Climate, 27, 672–683. doi: http://dx.doi.org/10.1175/JCLI-D-13-00062.1
  • Kumar, S., A. Hazra and B.N. Goswami, Role of interaction between dynamics, thermodynamics and cloud microphysics on summer monsoon precipitating clouds over the Myanmar Coast and the Western Ghats, Climate Dynamics, August 2014, Volume 43, Issue 3-4, pp 911-924
  • Lacagnina, C. and F. Selten, Evaluation of clouds and radiative fluxes in the EC-Earth general circulation model, Climate Dynamics November 2014, Volume 43, Issue 9-10, pp 2777-2796. Doi: 10.1007/s00382-014-2093-9S
  • Lappen, C-L., C. Schumacher, The role of tilted heating in the evolution of the MJO, Journal of Geophysical Research: Atmospheres, v119 n6 (27 March 2014): 2966-2989.
  • Lebsock, M., and H. Su, 2014: Application of active spaceborne remote sensing for understanding biases between passive cloud water path retrievals, J. Geophys. Res. Atmos., 119, 8962-8979, doi:10.1002/2014JD021568.
  • Lenouo A.,‬ Climatology of anomalous propagation radar over Douala Cameroon. : Meteorological Applications, v21 n2 (April 2014): 249-255.
  • Li, J., J. Huang, K. Stamnes, T. Wang, Y. Yi, X. Ding, and H. Jin (2014). Distributions and radiative forcings of various cloud types based on active and passive satellite datasets–Part 1: Geographical distributions and overlap of cloud types. Atmospheric Chemistry and Physics Discussions, 14(7), 10463-10514.
  • Li, J-L.F., D.E. Waliser, J.D. Neelin, J.P. Stachnik, T. Lee et al, Cloud-precipitation-radiation-dynamics interaction in global climate models: A snow and radiation interaction sensitivity experiment, J. Geophys. Res. Atmos., DOI: 10.1002/2013JD021038. v119 n7 (16 April 2014): 3809-3824.
  • Li, J.-L. F., D. E. Waliser, G. Stephens, S. W. Lee, 2014, Characterizing and understanding cloud ice and radiation budgets in global climate models and reanalysis, AMS monograph Attribute to Late Professor Michio Yanai, accepted.
  • Li, J.-L. F., R. M. Forbes, D. E. Waliser, G. Stephens, S. W. Lee, (2014), Characterizing impacts of precipitating snow hydrometeors in the radiation using the ECMWF IFS global model, J. Geophys. Res. Atmos., 119, doi:10.1002/2014JD021450.
  • Li, J.-L. F., W.-L. Lee, D. E. Waliser, Justin P. Stachnik, Eric Fetzer, Sun Won, Qing Yue, (2014), Characterizing Tropical Pacific Water Vapor and Radiative Biases in CMIP5 GCMs: Observationally-Based Analyses and A Snow and Radiation Interaction Sensitivity Experiment, J. Geophys. Res. Atmos., DOI: 10.1002/2014JD021924.
  • Li, J.-L. F., W.-L. Lee, Tong Lee, Eric Fetzer, Jia-Yuh Yu, (2014), The Impacts of Cloud Snow Radiative Effects on Pacific Oceans Surface Heat Fluxes, Surface Wind Stress, and Ocean Temperatures in Coupled GCM Simulations, J. Geophys. Res. Atmos., under review.
  • Li, L., R. Zhang, M. Wen, Diurnal variation in the occurrence frequency of the Tibetan Plateau vortices, Meteorology and Atmospheric Physics, August 2014, Volume 125, Issue 3-4, pp. 135-144. DOI 10.1007/s00703-014-0325-5
  • Li, Y., D. W. J. Thompson, Y. Huang, and M. Zhang, 2014: Observed Linkages between the Northern Annular Mode/North Atlantic Oscillation, Cloud Incidence, and Cloud Radiative Forcing. Geophysical Res. Lett., 41, 1681-1688, doi:10.1002/2013GL059113.
  • Liu, J., B. Chen, and J. Huang. "Discrimination and Validation of Clouds and Dust Aerosol Layers over the Sahara Desert with Combined CALIOP and IIR Measurements." Journal of Meteorological Research 2 (2014): 002
  • Luo, T., R. Yuan, and Z. Wang (2014), Lidar-based remote sensing of atmospheric boundary layer height over land and ocean. Atmospheric Measurement Techniques, 7(1), 173-182.
  • Luo, T., R. Yuan, and Z. Wang (2014), On factors controlling marine boundary layer aerosol optical depth, J. Geophys. Res. Atmos., 119, 3321–3334, doi:10.1002/2013JD020936
  • Ma, S., Wei Yan, Yun-Xian Huang, Wei-Hua Ai, Xianbin Zhao, Vicarious calibration of S-NPP/VIIRS day–night band using deep convective clouds, Remote Sensing of Environment, Volume 158, 1 March 2015, Pages 42–55, doi:10.1016/j.rse.2014.11.006
  • Mace, G. G., and Q. Zhang, 2014: The CloudSat radar-lidar geometrical profile product (RL-GeoProf): Updates, improvements, and selected results, J. Geophys. Res. Atmos., 119, doi:10.1002/2013JD021374.
  • Mann, J.A., J.C. Chiu, R.J. Hogan, E.J. O’Connor, T.S. L’[Ecuyere, T.H.M. Stein, A. Jefferson, et al, Aerosol impacts on drizzle properties in warm clouds from ARM Mobile Facility maritime and continental deployments, Journal of Geophysical Research: Atmospheres, v119 n7 (16 April 2014): 4136-4148.
  • Mason, S. C. Jakob, A. Protat, and J. Delanoë, 2014: Characterising observed mid-topped cloud regimes associated with Southern Ocean shortwave radiation biases. J. Climate, 27, 6189–6203. doi: http://dx.doi.org/10.1175/JCLI-D-14-00139.1
  • Matrosov, S.Y., 2014: Intercomparisons of CloudSat and ground-based radar retrievals of rain rate over land. J. Appl. Meteorol. Climatol., 53, 2360-2370. DOI: 10.1175/JAMC-D-14-0055.1
  • Matsui, T., et al. (2014), Introducing multisensor satellite radiance-based evaluation for regional Earth System modeling, J. Geophys. Res. Atmos., 119, 8450–8475, doi:10.1002/2013JD021424.
  • Mechoso, C.R., R. Wood, R. Weller, C. S. Bretherton, A. D. Clarke, H. Coe , C. Fairall, J. T. Farrar, G. Feingold, R. Garreaud, C. Grados, J. C. McWilliams , S. P. de Szoeke, S. E. Yuter, and P. Zuidema, 2014: Ocean-Cloud-Atmosphere-Land Interactions in the Southeastern Pacific: The VOCALS Program. Bull. Amer. Meteorol. Soc., doi: http://dx.doi.org/10.1175/BAMS-D-11-00246.1.
  • Miller, S. D., B. G. Brown, P. A. Kucera, C. Weeks, R. Bullock, J. Forsythe, P. T. Partain, A. S. Jones, C. Wolff, and D. Johnson, 2014: Toward Three-Dimensional Cloud Verification via the NASA A-Train and Model Evaluation Tools. Submitted to J. Appl. Meteorology and Climatology.
  • Miller, S.D., C. E. Weeks, R. G. Bullock, J. M. Forsythe, P. A. Kucera, B. G. Brown, C. A. Wolff, P. T. Partain, A. S. Jones, and D. B. Johnson, 2014: Model-Evaluation Tools for Three-Dimensional Cloud Verification via Spaceborne Active Sensors. J. Appl. Meteor. Climatol., 53, 2181–2195. doi: http://dx.doi.org/10.1175/JAMC-D-13-0322.1
  • Miller, S. D., Y. J. Noh, and A. K. Heidinger 2014: Liquid-topped mixed phase cloud detection by way of near-infrared multispectral reflectance ratios. J. Geophys. Res., 119(13), 8425-8267, doi:10.1002/2013JD021262. NOTE: JGR Cover Article.
  • Nagao, T. M., T. Y. Nakajima, H. Letu, and H. Okamoto, 2014: Cloud microphysical properties as seen from spaceborne passive multi-spectral imagers: interpretation in terms of vertical and horizontal inhomogeneity by using modeling and other spaceborne instruments. Trans. JSASS Aerospace Tech. Japan, 12, Tn_1-Tn_6, 2014.
  • Oreopoulos, L., N. Cho, D. Lee, S. Kato, 2014: An examination of the nature of global MODIS cloud regimes. J. Geophys. Res.-Atmos, submitted.
  • Palerme, C., J. E. Kay, C. Genthon, T. L'Ecuyer, N. B. Wood and C. Claud, 2014: How much snow falls on the Antarctic ice sheet? The Cryosphere Discuss., 8, 1279-1304, doi:10.5194/tcd-8-1279-2014.
  • Peng, J., L. Zi., H. Zhang, Temporal and spatial variations of global deep cloud systems based on CloudSat and CALIPSO satellite observations, Advances in Atmospheric Sciences, v31 n3 (2014 01 01): 593 -603
  • Protat, A., S.A. Young, L. Rikus, and M. Whimpey, Evaluation of hydrometeor frequency of occurrence in a limited-area numerical weather prediction system using near real-time CloudSat-CALIPSO observations, Quarterly Journal of the Royal Meteorological Society, DOI:10.1002/qj.2308, in press.
  • Protat, A., S. A. Young, S. A. McFarlane, T. L’Ecuyer, G. G. Mace, J. M. Comstock, C. N. Long, E. Berry, and J. Delanoë, 2014: Reconciling Ground-Based and Space-Based Estimates of the Frequency of Occurrence and Radiative Effect of Clouds around Darwin, Australia. J. Appl. Meteor. Climatol., 53, 456–478. doi: http://dx.doi.org/10.1175/JAMC-D-13-072.1
  • Punge, H.J.,K. M. Bedka, M. Kunz, and A. Werner, A new physically based stochastic event catalog for hail in Europe, Natural Hazards September 2014, Volume 73, Issue 3, pp 1625-1645. DOI 10.1007/s11069-014-1161-0
  • Reale, O., K. M. Lau, A. da Silva, and T. Matsui (2014), Impact of assimilated and interactive aerosol on tropical cyclogenesis, Geophys. Res. Lett., 41, 3282–3288, doi:10.1002/2014GL059918.
  • Rowe, A.K. and Houze, R.A., Microphysical characteristics of MJO convection over the Indian Ocean during DYNAMO, Journal of Geophysical Research: Atmospheres, v119 n5 (16 March 2014): 2543-2554.
  • Schmidt, G.A., et al, Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive, Journal of Advances in Modeling Earth Systems, v6 n1 (March 2014): 141-184.
  • Schmitt, C. G., and A. J. Heymsfield, 2014: Observational quantification of the separation of simple and complex atmospheric ice particles. Geophys. Res. Lett., 41, doi:10.1002/2013GL058781.
  • Scott, R. C., and D. Lubin (2014), Mixed-phase cloud radiative properties over Ross Island, Antarctica: The influence of various synoptic-scale atmospheric circulation regimes, J. Geophys. Res. Atmos., 119, 6702–6723, doi:10.1002/2013JD021132.
  • Serrano, D., Núñez, M., Utrillas, M. P., Marín, M. J., Marcos, C. and Martínez-Lozano, J. A. (2014), Effective cloud optical depth for overcast conditions determined with a UV radiometers. Int. J. Climatol., 34: 3939–3952. doi: 10.1002/joc.3953
  • Shi, C-H., D. Guo, B. Zheng, and R-Q Liu, Strateosphere-Troposphere exchange corresponding to a deep convection in the warm sector and abnormal subtropical front induced by a cutoff low over East Asia., Chinese Journal of Geophysics, v57 n1 (January 2014): 1-10.
  • Stanfield, R.E., X. Dong, B. Xi, A. Kennedy, A.D. Del Genio, P. Minnis, and J.H. Jiang, "Assessment of NASA GISS CMIP5 and Post-CMIP5 Simulated Clouds and TOA Radiation Budgets Using Satellite Observations: Part I: Cloud fraction and properties," J. Climate, doi:10.1175/JCLI-D-13-00558.1, 2014.
  • Stengel, M., S., Mieruch, M. Jerg, K.-G. Karlsson, R. Scheirer, B. Maddux, J.F. Meirink, C. Poulsen, R. Siddans, A. Walther and R. Hollmann, The Clouds Climate Change Initiative: Assessment of state-of-the-art cloud property retrieval schemes applied to AVHRR heritage measurements, Remote Sens. Environ., doi: 10.1016/j.rse.2013.10.035, in press.
  • Takahashi, H., and Z.J. Luo, Characterizing tropical overshooting deep convection from joint analysis of CloudSat and geostationary satellite observations, J. Geophys. Research Atmospheres, v119 n1 (2014 01 16) 112-121
  • Turner, E.C. and S.F.B. Tett, Using longwave HIRS radiances to test climate models, Climate Dynamics, August 2014, Vol. 43, Issue 3-4, pp.1103-1127. DOI 10.1007/s00382-013-1959-6
  • Vergados, P., Z.L. Luo, K. Emanuel, A.J. Mannucci, et al, Observational tests of hurricane intensity estimations using GPS radio occultations, Journal of Geophysical Research: Atmospheres, v119 n4 (27 February 2014): 1936-1948
  • Wang, C., & Huang, X. (2014). Parallax Correction in the Analysis of Multiple Satellite Data Sets.
  • Wang, L., Li, C., Yao, Z., Zhao, Z., Han, Z., & Wei, Q. (2014). Application of aircraft observations over Beijing in cloud microphysical property retrievals from CloudSat. Advances in Atmospheric Sciences, 31(4), 926-937.
  • Wang, C., Z. (Johnny) Luo, X. Chen, X. Zeng, W-K Tao, and X. Huang, 2014: A Physically Based Algorithm for Non-Blackbody Correction of Cloud-Top Temperature and Application to Convection Study. J. Appl. Meteor. Climatol., 53, 1844–1857. doi: http://dx.doi.org/10.1175/JAMC-D-13-0331.1
  • Wei, W., R. Zhang, M. Wen, X. Rong, T. Li, Impact of Indian summer monsoon on the South Asia high and its influence on summer rainfall over China, Climate Dynamics: Observational, Theoretical and Computational Research on the Climate System, v.43, n5-6 (201409), 1257-1269.
  • Wood, N. B., T. S. L'Ecuyer, A. J. Heymsfield, G. L. Stephens, D. R. Hudak, and P. Rodriguez, 2014: Estimating snow microphysical properties using collocated multisensor observations, J. Geophys. Res. Atmos., 119, 8941-8961 doi:10.1002/2013JD021303.
  • Wood, R., M. Wyant, C. S. Bretherton, J. Rémillard, P. Kollias, J. Fletcher, J. Stemmler, S. deSzoeke, S. E. Yuter, M. Miller, D. Mechem, G. Tselioudis, C. Chiu, J. Mann, E. O’Connor, R. Hogan, X. Dong, M. Miller, V. Ghate, A. Jefferson, Q. Min, P. Minnis, R. Palinkonda, B. Albrecht, E. Luke, C. Hannay, Y. Lin, 2014: Clouds, Aerosol, and Precipitation in the Marine Boundary Layer: An ARM Mobile Facility Deployment. Bull. Amer. Meteorol. Soc., in revision.
  • Wu, D. L., Lambert, A., Read, W. G., Eriksson, P., & Gong, J. (2014). MLS and CALIOP Cloud Ice Measurements in the Upper Troposphere: A Constraint from Microwave on Cloud Microphysics. Journal of Applied Meteorology and Climatology, 53(1), 157-165.
  • Xu, D., T.Auligné, X-Y. Huang, A validation of the multivariate and minimum residual method for cloud retrieval using radiance from multiple satellites, Advances in Atmospheric Sciences, March 2015, Volume 32, Issue 3, pp 349-362. Doi: 10.1007/s00376-014-3258-5.
  • Yang, Y., S.P. Palm, A. Marshak, D.L. Wu, H. Yu, Q. Fu, et al, First satellite-detected perturbations of outgoing longwave radiation associated with blowing snow events over Antarctica, Geophysical Research Letters, v41 n2 (28 January 2014): 730-735.
  • You, Q., Jiao, Y., Lin, H., Min, J., Kang, S., Ren, G. and Meng, X. (2014), Comparison of NCEP/NCAR and ERA-40 total cloud cover with surface observations over the Tibetan Plateau. Int. J. Climatol., 34: 2529–2537. doi: 10.1002/joc.3852
  • Zeng, S., J. Riedi, C. R. Trepte, D. M. Winker, and Y.-X. Hu, Study of global cloud droplet number concentration with A-Train satellites, Atmos. Chem. Phys., 14, 7125-7134, 2014, doi:10.5194/acp-14-7125-2014
  • Zhang, J., Zhanqing Li, Hongbin Chen, Hyelim Yoo, Maureen Cribb. (2014) Cloud vertical distribution from radiosonde, remote sensing, and model simulations. Climate Dynamics 43, 1129-1140. Online publication date: 1-Aug-2014. dOI: 10.1007/s00382-014-2142-4
  • Zhang, C., M. Wang, H. Morrison, R. Somerville, K. Zhang, X. Liu, J.-L. F. Li, (2014), Investigating Ice Nucleation in Cirrus Clouds with an Aerosol-enabled Multi-scale Modeling Framework JAMES DOI: 10.1002/2014MS000343, in press.
  • Zhang, D., T. Luo, Z. Wang and D. Liu: Spatial scales of altocumulus clouds observed with collocated CALIPSO and CloudSat measurements. Atmospheric Research, v148, (2014 10 30), 58-69.
  • Zhang, M., et al, CGILS: Results from the first phase of an international project to understand the physical mechanisms of low cloud feedbacks in single column models, J. Advances in Modeling Earth Systems, v5 n4 (Dec 2013), 826-842.
  • Zhang, D., Z. Wang, A. Heymsfield, J. Fan, and T. Luo, 2014: Ice Concentration Retrieval in Stratiform Mixed-Phase Clouds Using Cloud Radar Reflectivity Measurements and 1D Ice Growth Model Simulations. J. Atmos. Sci., 71, 3613–3635, doi: http://dx.doi.org/10.1175/JAS-D-13-0354.1
  • Zhang, Y., H. Chen, and R. Yu, 2014: Vertical Structures and Physical Properties of the Cold-Season Stratus Clouds Downstream of the Tibetan Plateau: Differences between Daytime and Nighttime. J. Climate, 27, 6857–6876. doi: http://dx.doi.org/10.1175/JCLI-D-14-00063.1